9 research outputs found

    Computational Analysis Of Differentially Expressed Genes In Mycobacterium Tuberculosis Infection

    Get PDF
    Tuberculosis remains a serious social and public health problem, affecting millions of people annually, and is reported at the end of 2014 by the World Health 01·ganization as one of the world's deadliest communicable diseases. The most challenging being the multi-drug resistant strains of the mycobacterium. Anothe1· maj01· challenge fmstmting the effective control of this disease, especially in po01· countries, is the long time taken to diagnose it, the standa1·d diagnosis of TB is by miuoscopy, but this does not give any inf01·mation on d1·ug-resistance - the cell culture tests take two weeks, by which time it might have sp1·ead to many othe1· people. In this project, the autho1·s utilized various Statistical and Computational techniques to analyze and discove1· genes that a1·e diffe1·entially exp1·essed in human blood cell (Peripheml blood mononuclea1· cells, PBMCs) subsequent to its stimulation with heat-killed Mycobacterium on comparison with an Roswell Pa1·k Memorial Institute (RPMI) culture medium as a control. Using this in-silico technique, some unique bioma1·kers we1·e discove1·ed which a1·e fm'the1· discussed in details. These bioma1·ken identified as diffe1·entially exp1·essed in the human blood cell will not only enhance om· understanding of the pathogen, but is also a spring boa1·d fo1· the completion of an Electronic hand-held, DNA-Based Tube1-culosis diagnosis device. Om· anticipated new technology is at the intersection of genetics and compute1· science that will be used f01· rapid and early detection of Mycobacterium Tuberculosis infection, a pedect altemative to all existing symptom based diagnostic tool

    PDX Finder: A portal for patient-derived tumor xenograft model discovery.

    Get PDF
    Patient-derived tumor xenograft (PDX) mouse models are a versatile oncology research platform for studying tumor biology and for testing chemotherapeutic approaches tailored to genomic characteristics of individual patients\u27 tumors. PDX models are generated and distributed by a diverse group of academic labs, multi-institution consortia and contract research organizations. The distributed nature of PDX repositories and the use of different metadata standards for describing model characteristics presents a significant challenge to identifying PDX models relevant to specific cancer research questions. The Jackson Laboratory and EMBL-EBI are addressing these challenges by co-developing PDX Finder, a comprehensive open global catalog of PDX models and their associated datasets. Within PDX Finder, model attributes are harmonized and integrated using a previously developed community minimal information standard to support consistent searching across the originating resources. Links to repositories are provided from the PDX Finder search results to facilitate model acquisition and/or collaboration. The PDX Finder resource currently contains information for 1985 PDX models of diverse cancers including those from large resources such as the Patient-Derived Models Repository, PDXNet and EurOPDX. Individuals or organizations that generate and distribute PDXs are invited to increase the \u27findability\u27 of their models by participating in the PDX Finder initiative at www.pdxfinder.org

    eQTL Catalogue 2023: New datasets, X chromosome QTLs, and improved detection and visualisation of transcript-level QTLs

    Get PDF
    The eQTL Catalogue is an open database of uniformly processed human molecular quantitative trait loci (QTLs). We are continuously updating the resource to further increase its utility for interpreting genetic associations with complex traits. Over the past two years, we have increased the number of uniformly processed studies from 21 to 31 and added X chromosome QTLs for 19 compatible studies. We have also implemented Leafcutter to directly identify splice-junction usage QTLs in all RNA sequencing datasets. Finally, to improve the interpretability of transcript-level QTLs, we have developed static QTL coverage plots that visualise the association between the genotype and average RNA sequencing read coverage in the region for all 1.7 million fine mapped associations. To illustrate the utility of these updates to the eQTL Catalogue, we performed colocalisation analysis between vitamin D levels in the UK Biobank and all molecular QTLs in the eQTL Catalogue. Although most GWAS loci colocalised both with eQTLs and transcript-level QTLs, we found that visual inspection could sometimes be used to distinguish primary splicing QTLs from those that appear to be secondary consequences of large-effect gene expression QTLs. While these visually confirmed primary splicing QTLs explain just 6/53 of the colocalising signals, they are significantly less pleiotropic than eQTLs and identify a prioritised causal gene in 4/6 cases

    The COVID-19 Data Portal: accelerating SARS-CoV-2 and COVID-19 research through rapid open access data sharing.

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic will be remembered as one of the defining events of the 21st century. The rapid global outbreak has had significant impacts on human society and is already responsible for millions of deaths. Understanding and tackling the impact of the virus has required a worldwide mobilisation and coordination of scientific research. The COVID-19 Data Portal (https://www.covid19dataportal.org/) was first released as part of the European COVID-19 Data Platform, on April 20th 2020 to facilitate rapid and open data sharing and analysis, to accelerate global SARS-CoV-2 and COVID-19 research. The COVID-19 Data Portal has fortnightly feature releases to continue to add new data types, search options, visualisations and improvements based on user feedback and research. The open datasets and intuitive suite of search, identification and download services, represent a truly FAIR (Findable, Accessible, Interoperable and Reusable) resource that enables researchers to easily identify and quickly obtain the key datasets needed for their COVID-19 research

    Development of Bioinformatics Infrastructure for Genomics Research in H3Africa

    Get PDF
    Background: Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet’s role has evolved in response to changing needs from the consortium and the African bioinformatics community. Objectives: H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. Methods and Results: Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for downstream interpretation of prioritized variants. To provide support for these and other bioinformatics queries, an online bioinformatics helpdesk backed by broad consortium expertise has been established. Further support is provided by means of various modes of bioinformatics training. Conclusions: For the past 4 years, the development of infrastructure support and human capacity through H3ABioNet, have significantly contributed to the establishment of African scientific networks, data analysis facilities, and training programs. Here, we describe the infrastructure and how it has affected genomics and bioinformatics research in Africa

    Development of Bioinformatics Infrastructure for Genomics Research:

    Get PDF
    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community

    The EurOPDX Data Portal: an open platform for patient-derived cancer xenograft data sharing and visualization

    No full text
    BACKGROUND: Patient-derived xenografts (PDX) mice models play an important role in preclinical trials and personalized medicine. Sharing data on the models is highly valuable for numerous reasons – ethical, economical, research cross validation etc. The EurOPDX Consortium was established 8 years ago to share such information and avoid duplicating efforts in developing new PDX mice models and unify approaches to support preclinical research. EurOPDX Data Portal is the unified data sharing platform adopted by the Consortium. MAIN BODY: In this paper we describe the main features of the EurOPDX Data Portal (https://dataportal.europdx.eu/), its architecture and possible utilization by researchers who look for PDX mice models for their research. The Portal offers a catalogue of European models accessible on a cooperative basis. The models are searchable by metadata, and a detailed view provides molecular profiles (gene expression, mutation, copy number alteration) and treatment studies. The Portal displays the data in multiple tools (PDX Finder, cBioPortal, and GenomeCruzer in future), which are populated from a common database displaying strictly mutually consistent views. (SHORT) CONCLUSION: EurOPDX Data Portal is an entry point to the EurOPDX Research Infrastructure offering PDX mice models for collaborative research, (meta)data describing their features and deep molecular data analysis according to users’ interests

    The EurOPDX Data Portal: an open platform for patient-derived cancer xenograft data sharing and visualization.

    Get PDF
    BACKGROUND: Patient-derived xenografts (PDX) mice models play an important role in preclinical trials and personalized medicine. Sharing data on the models is highly valuable for numerous reasons - ethical, economical, research cross validation etc. The EurOPDX Consortium was established 8 years ago to share such information and avoid duplicating efforts in developing new PDX mice models and unify approaches to support preclinical research. EurOPDX Data Portal is the unified data sharing platform adopted by the Consortium. MAIN BODY: In this paper we describe the main features of the EurOPDX Data Portal ( https://dataportal.europdx.eu/ ), its architecture and possible utilization by researchers who look for PDX mice models for their research. The Portal offers a catalogue of European models accessible on a cooperative basis. The models are searchable by metadata, and a detailed view provides molecular profiles (gene expression, mutation, copy number alteration) and treatment studies. The Portal displays the data in multiple tools (PDX Finder, cBioPortal, and GenomeCruzer in future), which are populated from a common database displaying strictly mutually consistent views. (SHORT) CONCLUSION: EurOPDX Data Portal is an entry point to the EurOPDX Research Infrastructure offering PDX mice models for collaborative research, (meta)data describing their features and deep molecular data analysis according to users\u27 interests
    corecore